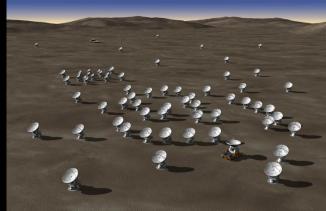
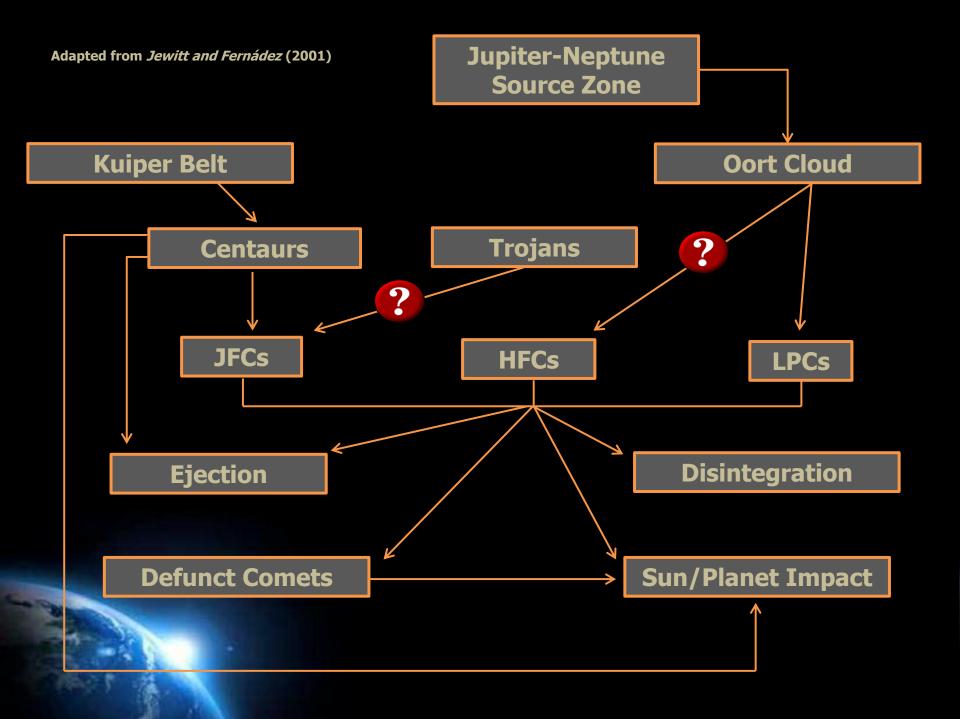
# Determining composition and morphology of Jupiter-family comet 209P/LINEAR using the Atacama Large Millimetre Array (ALMA)

PhD Proposal Tilo Hohenschläger


Supervisor: Dr. John Richer, UK project scientist for ALMA

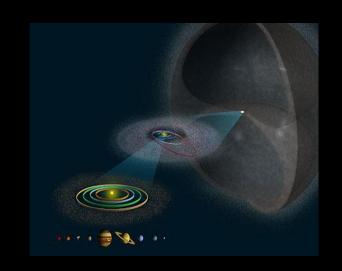
- **Project Motivation**
- **©** Comets
- **Project Objectives**
- **Project Methods**
- **Project Costs and Timeline**
- **Summary**



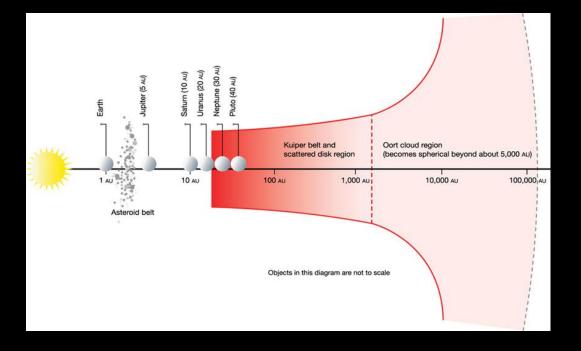








## **Project Motivation**

- Comets supply information about formation, evolution, thermal, and collisional history of our solar system
- Unique record of the physical processes involved in their accretion
- Contain original material from solar nebula interstellar grains and nebular condensates
- Affected formation and evolution of planetary atmospheres and source of water and organic material
  - Earth impact hazard
  - **©** Evolutional connections



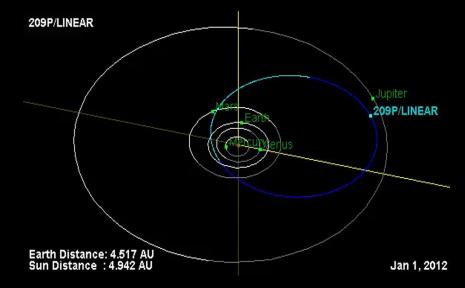

## **Comets**

- **②** JFCs orbital period of ≤ 20 years





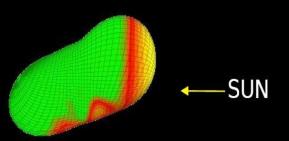


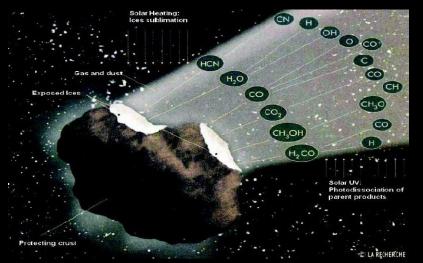

# 209P/LINEAR

discovered by Lincoln Near Earth Asteroid Research (LINEAR) program in 2004

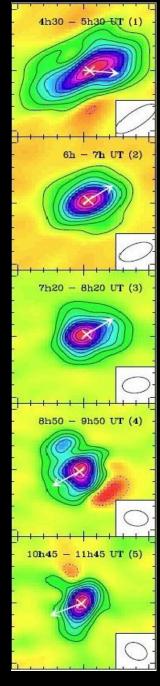


 $\odot T_i$ : 2.8


orbital period: 5.04 y

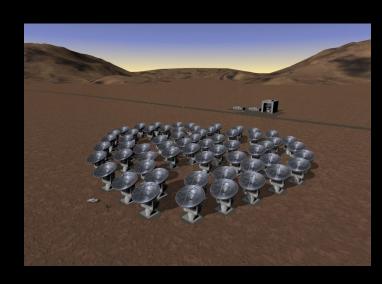



## **Project Objectives**


Detect and characterise the chemical composition

of coma






- Investigate and map the spatial distribution of dust and molecular species
  - Observation of gaseous jets and nucleus outgassing
  - Detection of thermal emission for nucleus size estimation



### **Methods**

© Collect data of molecular composition and structure of comet 209P/LINEARs coma and nucleus using ALMA



- Analyse recorded data and compare with other previous accomplished comet research
- Build a code within IDL platform to use collected data to create 3D – models of dust, molecular distribution and the morphology of the nucleus and define rotational period
  - Use the models derived to test against current observations and theories

# **Project Cost and Timeline**

#### **Timeline:**

| Month           | 1-3 | 4-6 | 7-9 | 10-12 | 1-3 | 4-6 | 7-9 | 10-12 | 1-3 | 4-6 | 7-9 | 10-12 |
|-----------------|-----|-----|-----|-------|-----|-----|-----|-------|-----|-----|-----|-------|
| (Year)          | (1) | (1) | (1) | (1)   | (2) | (2) | (2) | (2)   | (3) | (3) | (3) | (3)   |
| Collect<br>Data |     |     |     |       |     |     |     |       |     |     |     |       |
| Analyse         |     |     |     |       |     |     |     |       |     |     |     |       |
| Data            |     |     |     |       |     |     |     |       |     |     |     |       |
| Build           |     |     |     |       |     |     |     |       |     |     |     |       |
| Model           |     |     |     |       |     |     |     |       |     |     |     |       |
| Report          |     |     |     |       |     |     |     |       |     |     |     |       |
| Draft           |     |     |     |       |     |     |     |       |     |     |     |       |
| Report          |     |     |     |       |     |     |     |       |     |     |     |       |
| Final           |     |     |     |       |     |     |     |       |     |     |     |       |

#### Costs:

| Expense                          | Amount   |  |  |  |
|----------------------------------|----------|--|--|--|
| Living expenses (per year)       | £ 13,000 |  |  |  |
| Tuition Fees (per year)          | £ 3807   |  |  |  |
| Travel to ALMA regional centre   | £ 6000   |  |  |  |
| PC for data analysis             | £ 2000   |  |  |  |
| IDL Licencing and Journal Access | Provided |  |  |  |
| Total                            | £ 58,421 |  |  |  |

## **Summary**

- Problem: There still remains a large gap in knowledge of small solar system bodies and their interrelation
- Solution: By observing Comet 209P/LINEAR, data of structure and molecular composition can be used to model these and find correlations
- Required: Project requires £58,421 in funding for a 3 year study under the supervision of Dr. John Richer
- Method: Project intends to use collected data from ALMA to create an extensive model of 209P/LINEAR
  - Expected Outcome: A detailed study of a new comet will refine current models of the origin and evolution of cometary bodies

## References

Thinkquest, 2012. Giant impact.

Available at <a href="http://library.thinkquest.org/C001245/ac91-0193.gif">http://library.thinkquest.org/C001245/ac91-0193.gif</a> [Accessed 20 February 2012]

European Southern Observatory, 2012. Comet Hale Bopp.

Available at <a href="http://www.eso.org/public/images/phot-mar14-hbs-2/">http://www.eso.org/public/images/phot-mar14-hbs-2/</a> [Accessed 22 February 2012]

Atacama Large Millimetre Array, 2012. ALMA Images.

Available at <a href="http://www.alma.nrao.edu/almanews/almagallery/target72.html">http://www.alma.nrao.edu/almanews/almagallery/target72.html</a> [Accessed 23 February 2012]

NASA, 2012. 19P/Borrelly Image.

Available at <a href="http://nmpnasa.gov/ds1/img/borrelly\_1.jpg">http://nmpnasa.gov/ds1/img/borrelly\_1.jpg</a> [Accessed 23 February 2012]

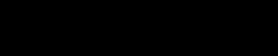
Atacama Large Millimetre Array, 2012. ALMA Images.

Available at <a href="http://www.alma.nrao.edu/almanews/almagallery/target72.html">http://www.alma.nrao.edu/almanews/almagallery/target72.html</a> [Accessed 23 February 2012]

Aerith, 2012. 209P/LINEAR Image.

Available at <a href="http://www.arith.net/pictures/jager/209P20090425.jpg">http://www.arith.net/pictures/jager/209P20090425.jpg</a> [Accessed 23 February 2012]

Bockelée-Morvan D., Henry F., Biver J., Colom P., Corvisier J., Despois D., Moreno R., and Wink J. (2009) Interferometric imaging of carbon monoxide in comet C/1995 O1 (Hale-Bopp): evidence of a strong rotating jet. In *Astronomy & Astrophysics*, 505, pp. 825-842


# THANK YOU FOR LISTENING!

?

?

? Any Questions?

?



